Extensions 1→N→G→Q→1 with N=C3⋊D12 and Q=C22

Direct product G=N×Q with N=C3⋊D12 and Q=C22
dρLabelID
C22×C3⋊D1248C2^2xC3:D12288,974

Semidirect products G=N:Q with N=C3⋊D12 and Q=C22
extensionφ:Q→Out NdρLabelID
C3⋊D121C22 = D1224D6φ: C22/C1C22 ⊆ Out C3⋊D12484C3:D12:1C2^2288,955
C3⋊D122C22 = D1227D6φ: C22/C1C22 ⊆ Out C3⋊D12244+C3:D12:2C2^2288,956
C3⋊D123C22 = S32×D4φ: C22/C1C22 ⊆ Out C3⋊D12248+C3:D12:3C2^2288,958
C3⋊D124C22 = S3×D42S3φ: C22/C1C22 ⊆ Out C3⋊D12488-C3:D12:4C2^2288,959
C3⋊D125C22 = Dic612D6φ: C22/C1C22 ⊆ Out C3⋊D12248+C3:D12:5C2^2288,960
C3⋊D126C22 = S3×Q83S3φ: C22/C1C22 ⊆ Out C3⋊D12488+C3:D12:6C2^2288,966
C3⋊D127C22 = C32⋊2+ 1+4φ: C22/C1C22 ⊆ Out C3⋊D12244C3:D12:7C2^2288,978
C3⋊D128C22 = C2×S3×D12φ: C22/C2C2 ⊆ Out C3⋊D1248C3:D12:8C2^2288,951
C3⋊D129C22 = D1216D6φ: C22/C2C2 ⊆ Out C3⋊D12488+C3:D12:9C2^2288,968
C3⋊D1210C22 = C2×D6.3D6φ: C22/C2C2 ⊆ Out C3⋊D1248C3:D12:10C2^2288,970
C3⋊D1211C22 = C2×D12⋊S3φ: C22/C2C2 ⊆ Out C3⋊D1248C3:D12:11C2^2288,944
C3⋊D1212C22 = C2×D6.6D6φ: C22/C2C2 ⊆ Out C3⋊D1248C3:D12:12C2^2288,949
C3⋊D1213C22 = S3×C4○D12φ: C22/C2C2 ⊆ Out C3⋊D12484C3:D12:13C2^2288,953
C3⋊D1214C22 = D1223D6φ: C22/C2C2 ⊆ Out C3⋊D12244C3:D12:14C2^2288,954
C3⋊D1215C22 = D1212D6φ: C22/C2C2 ⊆ Out C3⋊D12488-C3:D12:15C2^2288,961
C3⋊D1216C22 = D1213D6φ: C22/C2C2 ⊆ Out C3⋊D12248+C3:D12:16C2^2288,962
C3⋊D1217C22 = C2×S3×C3⋊D4φ: C22/C2C2 ⊆ Out C3⋊D1248C3:D12:17C2^2288,976
C3⋊D1218C22 = C2×Dic3⋊D6φ: C22/C2C2 ⊆ Out C3⋊D1224C3:D12:18C2^2288,977
C3⋊D1219C22 = C2×D6.D6φ: trivial image48C3:D12:19C2^2288,948

Non-split extensions G=N.Q with N=C3⋊D12 and Q=C22
extensionφ:Q→Out NdρLabelID
C3⋊D12.C22 = D12.33D6φ: C22/C1C22 ⊆ Out C3⋊D12484C3:D12.C2^2288,945
C3⋊D12.2C22 = Dic6.24D6φ: C22/C2C2 ⊆ Out C3⋊D12488-C3:D12.2C2^2288,957
C3⋊D12.3C22 = D12.25D6φ: C22/C2C2 ⊆ Out C3⋊D12488-C3:D12.3C2^2288,963
C3⋊D12.4C22 = Dic6.26D6φ: C22/C2C2 ⊆ Out C3⋊D12488+C3:D12.4C2^2288,964

׿
×
𝔽